Heavy-light decay constants using clover valence quarks and three flavors of dynamical improved staggered quarks

MILC Collaboration: C. Bernard, T. Burch, S. Datta, C. DeTar, Steven Gottlieb, E.B.

Gregory, U.M. Heller, J. Osborn, R. Sugar, and D. Toussaint

sg at indiana.edu

Outline

- Background
- What's New
- Analysis and Results
- Future

Background

Decay constants are important for CKM matrix elements

• e.g.,
$$\Gamma(D_s^+ \to l^+ \nu_l) \propto f_{D_s}^2 |V_{cs}|^2$$

- Decay constants are a good way to verify the accuracy of our techniques
- We use Clover quarks with Fermilab interpretation and Asqtad three-flavor dynamical configurations
- Calculation began in 2001 and will be superseded by new FNAL/MILC calculation with Clover heavy quarks and Asqtad light quarks (Simone talk)

What's New

- One-loop perturbative normalization Z_A has just become available (El-Khadra, Nobes, Trottier)
- Two ensembles of a = 0.09 fm configurations now have greatly increased statistics.

dynamical $am_{u,d}/am_s$	β	configs. generated	configs. analyzed
$a = 0.09 \text{ fm}; 28^3 \times 96$			
0.031/0.031	7.18	496	163
0.0124/0.031	7.11	527	242 (120)
0.0062/0.031	7.09	592	293 (48)

Analysis and Results

- 1. fit light pseudoscalar masses
- 2. chiral fit of pseudoscalar masses determines κ_c

- 3. fit light vector meson masses
- 4. chiral fit of vector meson masses just for reference (We now get *a* from heavy quark potential.)
- 5. determine m_s from mass of $\bar{s}s$ pseudoscalar state assuming linear chiral mass relation

6. fit heavy-light channels to determine masses and decay amplitudes

7. extrapolate or interpolate results in light quark mass to $m_{u,d}$ or m_s

8. after removal of perturbative logarithms, fit $f_{Qq}\sqrt{M_{Qq}}$ to a power series in $1/M_{Qq}$ and interpolate to $B,\,B_s,\,D$ and D_s meson masses

 put the logarithm back and use the heavy-light axial-vector current renormalization constant to get the renormalized decay-constant

After the above procedure is done on each ensemble, we have a partially quenched result at a particular value of dynamical M_{π}/M_{ρ} . We then plot these results as a function of $(M_{\pi}/M_{\rho})^2$ to perform a chiral extrapolation. This is demonstrated for f_{B_s}/f_B and f_{D_s}/f_D :

Future

- Complete the analysis including alternative cuts on fits, chiral extrapolations, etc.
- Check renormalization of axial vector current: compare with tadpole improvement and $Z_A^{hl} = \rho_A^{hl} \sqrt{Z_V^{hh} Z_V^{ll}}$ where ρ_A^{hl} is computed perturbatively and Z_V s nonperturbatively.
- Probably will not increase statistics, or run additional ensembles. (There are additional $N_f = 3 \ m_s = m_l$ and quenched results not shown here.)
- In collaboration with FNAL, extending calculation using improved staggered quarks for the light quarks that allows much closer approach to chiral limit (see Wingate et al. PRD 67, 054505 (2003).)